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a b s t r a c t

In this paper, a new switch control strategy based on an energy threshold is proposed

for the synchronized switch damping techniques in multimode control. This strategy is

derived from the total converted energy of a synchronized switch damping (SSD)

system in a given time window. Using the new strategy the voltage is inverted only at

energy between two neighboring extrema, exceeds the threshold. The new switch

control strategy is used in both the synchronized switch damping on inductor (SSDI)

technique and the synchronized switch damping on voltage source (SSDV) technique,

which are applied to the two-mode control of a composite beam. Their control

performances are compared with those of the single-mode control and those of classical

SSDI and SSDV techniques in two-mode control. The experimental results show that

voltage inversion is prevented at some of the displacement extrema to increase the total

converted energy, and exhibit better global damping effect than classical SSDI and

classical SSDV, respectively. In single mode, the best control performance is achieved

when the voltage is inverted at every extremum. But in multimodal control, the total

converted energy in a given time window is increased and the control performance is

improved when some extrema are skipped.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Piezoelectric element is one of the most attractive functional materials for smart structures because of good
mechanical–electrical coupling characteristics, frequency response and reliability. The methods of vibration control using
piezoelectric element can be divided into three categories: passive, active and semi-active [1–3]. In the past decade, semi-
active vibration control methods based on switching shunt circuits have attracted the attention of many researchers in this
field [4–7]. The switching techniques can be divided into two types: state-based switching technique and synchronized
switching technique. The state-based switching technique is basically applicable to multimode control, but it requires
powerful digital signal processing system for estimation of state variables [7]. The synchronized switching damping (SSD)
techniques have several advantages compared with other methods: the control system is very simple and compact [8–10].
The shunt circuit does not require complicated digital signal processing system, nor bulky amplifier and external power
sources. Moreover, the shunt circuit configuration does not require a parametric model of the vibrating structure for design
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purposes, and is correspondingly easier to implement. In addition, the control performance is not sensitive to the variation
of the parameters of the system.

The principle of SSD techniques is to invert the voltage on the piezoelectric patches so that a phase shift is induced on
the voltage relative to the displacement. The phase shift leads to a net conversion of the mechanical energy of vibration to
the electrical energy stored on the piezoelectric patch in each vibration cycle. The electrical energy is then dissipated in the
shunt circuit. Several techniques of SSD have been developed, including SSDS (synchronized switch damping on short
circuit) [10], SSDI (synchronized switch damping on inductor) [8], SSDV (synchronized switch damping with voltage
source) [11,12]. In all the SSD techniques, the switch is controlled by the same strategy, which inverts the voltage at each
extremum of displacement to guarantee that the force generated by the voltage is in opposite direction with the vibration
velocity. For single-mode vibration control, this algorithm has been proven to be effective. However, in multimodal
vibration, the number of extrema in the displacement curve may increase drastically due to the extrema of different modes
so that this strategy is no longer efficient because over-frequent switching may reduce the voltage on the piezoelectric
patch. Hence design of new switch control strategy is an important issue for the application of SSD techniques in
multimode vibration control.

Several research works on application of the SSD technique in multimodal vibration control have been reported. Corr
and Clark [13] experimented with SSDI or pulse switching in the case of a multimodal vibration. The proposed technique
consists of selecting the modes to be controlled using numerical filtering techniques. Filtering devices were used to select
modes to be controlled, but filtering inevitably leads to time delay of switching actions that result in a lack of effectiveness.
Niederberger [14] used a hybrid system optimal control approach to derive the optimal switching laws of electronic shunt
circuits for mechanical vibration suppression of a beam. Simulation results showed that the switching laws are also
effective for two-mode control. Guyomar et al. [15] proposed a novel multimodal control law for the SSD technique based
on a probabilistic approach and achieved good control performance, but the control performance was checked only by
simulation. The amount of calculation of this method is relatively larger because the probabilistic distribution of
displacement in a given time window needs to be calculated for switch control. Following the probabilistic approach, an
enhanced control strategy for random vibration control based on statistics was developed by Guyomar [16]. A significant
decrease in vibration energy was demonstrated experimentally and theoretically in the case of a clamped beam excited by
random noise. In the case of multimodal vibration, all of the modes were controlled. The authors of this paper proposed a
simple switch control strategy based on a displacement threshold in the former study [17]. The experimental results
exhibited good performance of the simple switch control strategy in multimode vibration control of a composite beam
with much less CPU load of computation.

In this study a new switch control strategy to maximize of the converted energy is developed to address the problem of
SSD technique in multimodal vibration control. For simplicity, the control of two-mode vibration is considered in this
study. The new switch control strategy is based on the converted energy in a given time window and an energy threshold is
set for the converted energy between two neighboring switching points to increase the total converted energy. The new
strategy is applied to the two-mode vibration control of a composite beam and the control results are compared with those
of the SSDI and SSDV using the classical switch. In Section 2, multimodal modeling of a clamped-free beam with
piezoelectric elements is presented. The switching strategy is discussed in detail in Section 3. The experimental system is
introduced in Section 4, and the experimental results of multimodal vibration control and their discussions are given in
Section 5.
2. The mechanical model of the beam

The structure used in the experiment is a cantilever GFRP (glass fiber reinforced plastics) composite beam with two
embedded piezoelectric patches which are close to the end of clamped beam, as shown in Fig. 1. The composite beam was
made from four layers of GFRP prepreg and the piezoelectric patch is laminated in the following order: 01/901/901/PZT/01,
Fig. 1. Schematic representation of the system.
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where 01 is the length direction of the beam. The beam is 300 mm long, 50 mm wide and 1.2 mm thick and its properties
are given in Table 1. The dimension of piezoelectric patches is a square of 30 mm�30 mm and 0.2 mm thick. They are
polarized in the thickness directions which are perpendicular to the beam and their properties are given in Table 2.
The two piezoelectric elements are electrically connected in parallel.

The Euler–Bernoulli assumptions are used for the vibration analysis of the beam. It is also assumed that the beam is
homogenous in material properties and uniform in geometry, that is, the influence of embedded piezoelectric patch on the
stiffness is neglected. If the deflection of the beam is denoted by u(x, t), the equation of motion can be expressed in the
following form:

rA
@2uðx; tÞ

@t2
þc

@uðx; tÞ

@t
þEI

@4uðx; tÞ

@x4
¼ f ðx; tÞ; (1)

where r(x) is the mass per unit length, A is the cross-sectional area, c is the damping coefficient, E is the Young’s modulus,
I is the moment of inertia, and f(x, t) is the distributed external force. The force f(x, t) includes two parts: the force for
excitation, fe(x, t), and the one generated by the piezoelectric actuators for control, fp(x, t). After modal analysis, the natural
frequencies and modal functions can be obtained. The natural frequencies of the first and second modes are 11 and 68.8 Hz,
respectively.

The deflection u(x, t) of the beam under external excitation can be written as the summation of modal coordinates in the
beam and the eigenmode functions. This is shown as

uðx; tÞ ¼
X1
i ¼ 1

fiðxÞuiðtÞ; (2)

where fi(x) is the ith modal function and ui(t) is the ith modal coordinate. Substituting (2) into (1) and considering the
orthogonality of modal functions, the following equation can be obtained:

Mi €uiþCi _uiþKEiui ¼ FeiþFpi; (3)

where Mi is the modal mass, Ci is the modal damping factor, KEi is the modal stiffness, Fei is the modal force of excitation,
and Fpi is modal force generated by the piezoelectric patch. The system parameters in Eq. (3) can be expressed as

Mi ¼

Z L

0
rAf2

i ðxÞdx; Ki ¼

Z L

0
EIf002i ðxÞdx¼o2

i

Z L

0
rAf2

i ðxÞdx; Fei ¼

Z L

0
feðx; tÞfiðxÞdx; Fpi ¼

Z L

0
fpðx; tÞfiðxÞdx: (4)

The damping coefficient Ci must be estimated experimentally. In this study the damping coefficient of each mode was
calculated from the decaying time response of free vibration of that mode. The distributed force fp(x, t) is proportional to
the voltage on the piezoelectric patch and can be expressed as

fpðx; tÞ ¼ �2ypbpe31V ½d0ðx�bÞ�d0ðx�aÞ�; (5)

where yp is the distance from the mid-plane of the piezoelectric patch to the mid-plane of the beam, bp is the width of the
piezoelectric patches, e31 is the piezoelectric constant, d is the Dirac delta function and a and b are the x coordinates of
the piezoelectric patches. The system in Eq. (3) is illustrated in Fig. 1. Substitution of Eq. (5) into the expression of Fpi in
Table 1
Material properties of the composite beam.

GFRP

Elastic modulus E1 1.65�10+ 10 (N/m2)

Elastic modulus E2 3.52�10+ 10 (N/m2)

Poisson ratio 0.109

Shear modulus 1.25�10+ 10 (N/m2)

Density 1900 (kg/m3)

Thickness 1.2�103 (m)

Table 2
Material properties of the piezoelectric patch.

PZT

Elastic modulus 59�10+ 9 (N/m2)

Poisson ratio 0.345

Density 7400 (kg/m3)

Thickness 2�104 (m)

Piezoelectric constant d31 260�1012 (m/V)

Capacitance Cp 141�109 (F)
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Eq. (4) gives

Fpi ¼�aiV ; (6)

where

ai ¼ 2ypbpe31½fi
0 ðx�bÞ�fi

0 ðx�aÞ�: (7)

Eq. (6) indicates that the modal force is proportional to the voltage V on the piezoelectric patch. If the displacement sensor
is used to measure the displacement of the beam at x=xs, output value is

u¼ uðxs; tÞ ¼
X1
i ¼ 1

fiðxsÞuiðtÞ: (8)

The above equation means that the measured output is linear combination of the modal coordinates ui. Although almost
all engineering structures are continuum, their vibration can be expressed as the superposition of modal vibration using
modal coordinate as shown in Eq. (8). At the resonance frequency of specific mode, the system can be simplified as
single-degree-of freedom and expressed by an ordinary differential equation (3).

In this study, as the first step to the general multimode control, only the resonant vibrations of the first and the second
natural modes are considered. It is assumed that the amplitudes of the first mode and the second mode are dominant and
the higher-order modes can be neglected. The following energy equation of the system with two modes considered is
obtained by multiplying both sides of Eq. (3) by the velocity, integrating over the time variable and taking summation.

Z
ðFe1 _u1þFe2 _u2Þdt¼

1

2
ðM1 _u

2
1þM2 _u

2
2Þþ

1

2
ðKE1u2

1þKE2u2
2Þþ

Z
ðC1 _u

2
1þC2 _u

2
2Þdtþ

Z
ða1 _u1þa2 _u2ÞV dt: (9)

The provided energy is divided into kinetic energy, potential elastic energy, mechanical losses, and transferred energy.
In the steady state, the sum of the kinetic energy and the elastic energy can be considered to be constant for each mode.
Hence the input energy, which increases with the time of integration in Eq. (9), is balanced by the mechanical losses and
the transferred energy. The transferred energy corresponds to the part of the mechanical energy which is converted into
electrical energy through the action of modal force and dissipated in the shunt circuit. Maximizing this energy is
equivalent to minimizing the mechanical energy in the structure if the energy provided by the external excitation is the
same (Fig. 2).
3. Control strategy

Fig. 3 shows the relationship between the displacement, velocity and voltage on the piezoelectric element in a vibration
system. Without switching action, the voltage is proportional to the displacement [15]. The converted energy expressed by
the last term in Eq. (9) is zero in a period of mechanical vibration. In the SSD techniques, a phase shift is induced in the
voltage on the piezoelectric element and consequently a net energy conversion is generated by the switching actions of the
shunt circuit. In the several variations of SSD, the SSDI technique is relatively efficient and does not need external energy in
driving the piezoelectric element so that it can be used as a good benchmark method in evaluating the efficiency of a
switching strategy.

In SSDI technique the voltage on the piezoelectric patch is inverted at the extrema of the vibration displacement by the
switch circuit as shown in Fig. 3. The objective of a control strategy is to maximize the converted energy. The voltage on the
piezoelectric element in the steady state of SSDI control can be decomposed into two components as illustrated in Fig. 4,
a rectangular signal due to switching action and a signal that is an image of the strain variation. That is, the voltage on the
piezoelectric element can be expressed in the following form:

V ¼ VswþVst; (10)
V

u1(t)

M1 M2 Mn

C1 α1 C2 α 2 Cn

Fe1(t)

αnEnK

Fe2(t) u2(t) Fen(t) u3(t)

2EK1EK

Fig. 2. Diagram of the multimode electromechanical model.
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Fig. 3. Schematic diagram of a SSDI control system.

Fig. 4. Decomposition of the voltage signal in SSD techniques.
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where Vsw is the rectangular single and Vst is generated by strain variation. As shown in [12,17], the voltage generated by
strain can be written as

Vst ¼
1

Cp
ða1u1þa2u2Þ; (11)

where Cp is the capacitance of the piezoelectric element and defined as

Cp ¼
e33bpðb�aÞ

hp
; (12)

where hp is the thickness of the piezoelectric element. The converted energy for the ith mode can be expressed as
Z
aiðVswþVstÞ _ui dt¼

Z
aiVsw _ui dtþ

Z
aiVst _ui dt¼

Z
aiVsw duiþ

Z
aiVst dui: (13)

In the case of single-mode control, it has been proved that
R
aiVst dui ¼

R
a2

i ui dui is zero in a period of mechanical
vibration [12,18]. In multimode control, this term becomes more complicated because different modes have different
periods and there are coupling effects between different modes. However, physically this term corresponds to the energy
that is converted reciprocally between mechanical and electrical in different phases of vibration and does not contribute to
vibration damping so that it does not need to be considered.

Mathematically, it can be proved that the value of
R
aiVst dui is relatively small compared to

R
aiVsw dui for a large time

window. Without loss of generality, assuming that the index i in Eq. (13) is 1 and the considered duration of time is (0, T),
the second term can be expressed as

Z u1ðTÞ

u1ð0Þ
a1Vst du1 ¼

a1

Cp

�Z u1ðTÞ

u1ð0Þ
a1u1 du1þ

Z u1ðTÞ

u1ð0Þ
a2u2 du1

�
: (14)

Since u1 and u2 are modal coordinates, they can be expressed as

u1 ¼ u1Msinðo1t�j1Þ; u2 ¼ u2Msinðo2t�j2Þ;

where u1M and u2M are the amplitudes, o1 and o2 are the angular frequencies, and j1 and j2 are the initial phase of the
modes, respectively. From the properties of triangular functions, the first integration on the right-hand side of the above
equation is bounded by a2

1u2
1M=ð2CpÞ and the second term is bounded by a1a2u1Mu2M=Cp independent of the integration

duration. If sufficiently long duration of time is considered, the average converted energy in each cycle of vibration is
negligible. Hence the objective of optimizing switching algorithm is to maximize

R
aiVsw dui in a given duration of time.

As it will be shown later the term
R
aiVsw dui increases with the considered duration of time.
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In the following derivation,
R
aiVst dui will not be considered. Moreover, in the steady state the magnitude of Vsw is

almost constant, but its sign is reversed at each switching point. For two-mode control, the converted energy can be
written as

Z
ðFe1 _u1þFe2 _u2Þdt¼

Z
ðC1 _u

2
1þC2 _u

2
2Þdtþ

Z
ða1Vsw du1þa2Vsw du2Þ

¼

Z
ðC1 _u

2
1þC2 _u

2
2Þdtþ

Z
aVsw dð ~a1u1þ ~a2u2Þ

¼

Z
ðC1 _u

2
1þC2 _u

2
2Þdtþ

Z
aVsw d ~u; (15)

where a is an arbitrary voltage constant used to normalize a1 and a2, and

~a1 ¼ a1=a; ~a2 ¼ a2=a; ~u ¼ ~a1u1þ ~a2u2; (16)

~u is a virtual displacement, which is usually difficult to measure in a physical system. The above normalization is
performed just to keep the final term of Eq. (15) in the same form as that in the single-mode control. On the other hand,
in order to obtain damping effect, it is necessary to keep the sign of Vst the same as that of the velocity ~u, as shown in Fig. 4,
so that the electrical energy is converted to mechanical energy all the time. It means that the information of ~u is necessary
for the switch control. In order to solve this problem, the measured displacement in Eq. (8) rewritten as

us ¼f1ðxsÞu1þf2ðxsÞu2 (17)

in the two-mode case. If an appropriate measuring point is chosen so that

f1ðxsÞ : f2ðxsÞ ¼ ~a1 : ~a2 ¼ a1 : a2; (18)

it is possible to make the measured displacement and virtual displacement proportional, that is,

~u ¼ kus ¼ k½f1ðxsÞu1þf2ðxsÞu2�; (19)

where k is a constant. Hence the extrema of us can be used for switch control. In this study, the measurement point is
chosen to satisfy the condition (18) so that the measured displacement can be used in the switch control. When the
number of considered modes is more than two, this kind of measurement will be difficult to find in a real structure.
However, this problem can be solved by a piezoelectric sensor collocated with the piezoelectric actuator for semi-active
control. For the collocated piezoelectric sensor, its output voltage is given by Eq. (13), which is proportional to the virtual
displacement.

In order to have better understanding of the complexity in multimode control, the converted energy is written in the
following form:

Z uðtjþ 1Þ

uðtjÞ

aVsw du¼

Z uðtjþ 1Þ

uðtjÞ

a1Vsw du1þ

Z uðtjþ 1Þ

uðtjÞ

a2Vsw du2; (20)

where tj and tj +1 are the times of the jth and (j+1)th switching point. The meaning of each term is straightforward.
From Eq. (20), the following switch control rule can be obtained.

Switch control rule 1: The condition to obtain net converted energy between two switching points is to make Vsw and _u
have the same sign.

The above rule is the same as inverting voltage at the displacement extrema. However, even if the above condition is
satisfied, the Vsw do not always have the same sign as each _ui (i=1, 2). Because the two modes have different frequencies,
_u1 and _u2 may have opposite sign so that Vsw can only take the same sign with one of the two velocities. In that case one
mode is damped, and the other mode is excited. This makes it difficult to design an optimal control strategy. The simplest
switch control scheme is to switch the voltage at each extremum, which is the same as that in the single-mode control.
However, due to the limitation of voltage inversion factor, this scheme has been proved in the experiment to be not
optimal for multimode control [15–17].

In order to investigate the energy conversion efficiency, the total converted energy in a given time window (0, T) is
considered. This time window is much longer than the periods of both modes so that multiple cycles of vibration are
contained in it. The total number of extrema is N and the total times of switching action, which takes place at some
extrema of the resultant displacement in this time window, is assumed to be 2n, satisfying 2noN. The converted energy is

Z T

0
aVsw _u dt¼ ajVswj

Z T

0
signðVswÞ _u dt

¼ ajVswj
X2n

j ¼ 1

signðVswÞ

Z uðtjÞ

uðtj�1Þ

du

¼ ajVswj
X2n

j ¼ 1

signðVswÞ½uðtjÞ�uðtj�1Þ�
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¼ ajVswj
X2n

j ¼ 1

juðtjÞ�uðtj�1Þj

¼ ajVswj
X2n

j ¼ 1

jDujj

¼ ajVswj2njDujj; (21)

where |Vsw| is considered to be constant at the steady state, tj (j=0,1,y, 2n) are switching time so that Vsw does not change
sign between tj�1 and tj, Duj is the displacement of the beam between tj�1 and tj, and jDujj is the average effective distance
between the neighboring points.

The relation between the voltage before inversion, VM,j�1, and the voltage after inversion Vm,j can be expressed in the
following form:

Vm;j ¼ gVM;j�1; (22)

where g is the inversion coefficient, which is between 0 and 1 between the voltages are expressed in their absolute values
[12]. On the other hand, the voltage Vm,j is increased to VM,j by the displacement of vibration before the next switching
point. Their relation can be expressed as

VM;j ¼ Vm;jþ
a
C0
jDujj; (23)

where C0 is the capacitance of the piezoelectric patch. Summation of Eq. (22) with respect to index j and considering
Eq. (23) gives

X2n

j ¼ 1

VM;j ¼
a=C0

1�g
X2n

j ¼ 1

jDujj: (24)

It has been assumed that VM,0=VM,2n in the derivation of the above equation. Since jDujj varies with j, neither VM, j or Vm, j

is constant. However as an approximation, it is assumed that VM, j and Vm, j are constant in the steady state. This
assumption may not hold for each cycle of vibration, but statistically the error caused by the assumption is relatively small
for a certain time window. The amplitude of the rectangular wave is

jVswj ¼
1

2
ðVMþVmÞ ¼

1þg
2

VM

¼
1þg

2

1

2n

a=C0

1�g
X2n

j ¼ 1

jDujj

¼
1þg
1�g

a
2C0

1

2n

X2n

j ¼ 1

jDujj

¼
1þg
1�g

a
2C0
jDujj: (25)

Substitution of Eq. (25) into (21) gives

Z T

0
aVsw du¼

1þg
1�g

a2

2C0
2njDujj

2
: (26)

Eq. (26) indicates that the converted energy
R T

0 aVsw du depends on both the number of switching action 2n and the

average effective distance jDujj, but it is more sensitive to the later because it is squared in the equation.

According to Eq. (26), the converted energy can be increased by increasing the number of switching action 2n and

average effective distance jDujj. However it is impossible to increase both 2n and jDujj simultaneously, and a tradeoff must

be made between them. Since the voltage is switched at displacement extrema, the maximum value of 2n equals the
number of displacement extrema, N, in the time window (0, T). However experimental results exhibit that optimal control
performance is not achieved at 2n=N, but at 2noN by skipping some displacement extrema [15–17]. This means that

decreasing 2n can increase jDujj, consequently increase converted energy. The following is an example to explain how

decrease of 2n can increase jDujj.

As shown in Fig. 5, after the voltage is inverted at the displacement minimum at tj�1, the next switching point is the
displacement maximum at t0j if a classical switch is used. However, the effective displacement jDuj

0 j ¼ uðtj
0 Þ�uðtj�1Þ, which

is difference of displacements at the two extrema and is directly proportional to the converted energy between the two
switching points, is relatively small. If the extremum at t0j is skipped and the voltage is inverted at tj, the effective distance
becomes jDuj

0 j ¼ uðtjÞ�uðtj�1Þ, which is greater than jDuj
0 j. Consequently the average effective distance jDujj can be

increased. This means that if some of the extrema are skipped the total converted energy can be increased.
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Fig. 5. Schematic view of the switching strategy.

Fig. 6. Experimental setup.
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Based on the above discussion, it can be concluded that in order to increase the converted energy a threshold can be set
on the effective distance jDujj to control the switch. The switch control rule can be written as:

Switch control rule 2: If jDujjZDucr, the voltage is inverted at the extremum; otherwise, the extremum is skipped,
where Ducr is a threshold.

Since jaVswDujj is the converted energy between two switching points, this rule is called energy-based rule. In order to
use the second switch control rule, Ducr must be determined first. Since the displacement depends on many factors such as
measurement position, excitation level, etc., no pre-determined value of Ducr can be set. Hence in the implementation of
the second rule, Ducr is set to an average value of preceding m effective distances multiplied by a coefficient, that is,

Ducr;j ¼ b
Xm

k ¼ 1

jDuj�kj; (27)

where 0obo1. The optimal value of b can be determined only by experience. In this study test running of control
experiments was performed under different conditions and the results indicate that the range of optimal b is from 0.5 to
0.7. It should be noticed that the new switch control strategy is the same as the classical switch control strategy in
single-mode control.

4. Experimental setup for control

The experimental setup is shown in Fig. 6. One end of the beam is clamped and the other is free. The clamped condition
was achieved by putting one end of the composite plate between two aluminum blocks which are bonded together tightly
with two bolts. The first two resonance modes are considered. The piezoelectric patches are located at the surface of the
clamped end, where the maximum strain of the first two modes is induced. The clamped end is mounted on a mini-shaker,
which is used to excite the vibration of the beam. The natural frequencies of the first two modes of the beam were
estimated experimentally from the frequency response of the beam by sweeping the excitation frequency from 5 Hz to
80 Hz. The estimated values of the first two natural frequencies are 11 and 68.8 Hz, respectively. In order that Eq. (18) is
satisfied, the displacement sensor is putted at x=145 mm, not the free end the beam, to measure the vibration
displacement. The displacement signal is used to generate switching signal. As the number of mode to be controlled
increases, the sensor point may become more difficult to choose so that more sophisticated identification system will be
necessary.
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The control approach is implemented in a DSP environment based on the dSPACE board DS1103. The displacement
signal from the laser sensor is converted to digital and sent to the DSP system. The extrema on the displacement signal are
detected by comparing three consecutive points. After an extremum is found, the effective distance Duj is calculated. Based
on switch control rule 2, if the jDujjZDucr;j is satisfied, the voltage is inverted. Otherwise, the extremum is skipped.
The value of b was set to 0.6 in the experiment.

In the control experiment, the new switch control strategy based on the energy threshold is applied to the SSDI
approach and its performance is compared with that of the classical SSDI, in which the voltage on the piezoelectric patch is
inverted at each extremum. The new switch control strategy is also combined with the adaptive SSDV based on LMS
algorithm, which was proposed by the author in the former study [18], and its performance is compared with that of the
classical SSDV, in which the voltage source is optimized manually.
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Fig. 7. Control performances of the first mode with classical SSDI and classical SSDV in single-mode control.
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Fig. 8. Control performances of the second mode with classical SSDI and classical SSDV in single-mode control.

Table 3
The control performances of SSDI and SSDV in single-mode control.

Frequency

(Hz)

Peak value without

control (dB)

Peak value (upper) and reduction (lower)

with classical SSDI (dB)

Peak value (upper) and reduction

(lower) with classical SSDV (dB)

11 0.8 �5.2 �25.9

�6 �26.7

69.1 �8 �11 �27

�3 �19
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5. Results and discussion

In order to evaluate the control performance of the new method in multimodal control, the single-mode control and
two-mode control of the beam using the classical SSDI and classical SSDV are carried out first. Their results are used in the
comparison with the results of the new control method. For easy comparison of their control performance, the spectrum of
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Fig. 9. Frequency of the displacement with the classical SSDI and classical SSDV techniques in two-mode control: (a) frequency response of the

displacement; (b) enlarged around the resonant frequency of the first mode; and (c) enlarged around the resonant frequency of the second mode.
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the normalized displacement are expressed in decibel as follows:

The decibel value¼ 20 log10ðF ðu=uRÞÞ

where F is the symbol of Fourier Transformation and uR is the reference displacement for normalization. The value of uR is
set to 1 mm in the following sections so that 0 dB is equivalent to 1 mm and �20 dB is equivalent to 0.1 mm.

5.1. Results of the single-mode control

In the single-mode control, only one mode is excited. Both the SSDI and SSDV techniques are used. Results are shown in
Figs. 7 and 8. The first mode is reduced by 6 dB with classical SSDI and by 26.6 dB with classical SSDV. Damping effects of
2.9 and 19 dB are achieved respectively with classical SSDI and classical SSDV for the second mode. The control effects of
both the SSDI and SSDV for the second mode are much lower than those for the first mode. This is due to the switch delay
and the time needed for voltage inversion. The influence of the switch delay and the time for voltage inversion on control
performance depends on the ratio of the switch delay or the inversion time to the vibration period. The greater the ratio is,
the greater the influence is. The phase delay can be expressed as ji ¼ 2pt=T i, where t is the time delay and T i is the period
of the ith mode. As the frequency increases, the period decreases. This means that for the same time delay, the phase delay
is larger for the high-order modes than for the low-order modes. Hence the influence of the switch delay and the inversion
time is greater for high-order modes than for low-order modes. The performances of the classical SSDI and SSDV in single-
mode control are summarized in Table 3. The decibel values of the first and second resonance peaks without and with
control, and the damping effect, which is the reduction of peak values, are listed in the table.

5.2. Results of the two-mode control using the classical SSDI and SSDV

Next the classical SSDI and SSDV are used in the two-mode control. In the classical SSDI and SSDV, the voltage is
inverted at each extremum. The beam is excited at the resonant frequencies of the first and second natural modes. The
frequency response of the uncontrolled and controlled vibration of the beam is shown in Fig. 9. With the classical SSDI the
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Fig. 10. Time response of the displacement and switched voltage with classical SSDI technique: (a) displacements with and without control and

(b) switched voltage and controlled displacement.
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vibration amplitude is reduced by 5.1 dB at the first resonant frequency and by 2.6 dB at the second resonant frequencies.
The damping effects of the classical SSDI in the two-mode control are slightly smaller than those in the single-mode
control. Fig. 10(a) shows the time response of the displacement before and after control and Fig. 10(b) shows the switched
voltage. On average the voltage Vsw is about 40 V and the voltage Vst is about 10 V.

With the classical SSDV, the vibration amplitude is reduced by 15.2 dB at the first resonant frequency and by 10.4 dB at
the second resonant frequencies, which are much smaller than those in single-mode control. Fig. 11(a) shows the time
response of the displacement before and after control and Fig. 11(b) shows the switched voltage. The displacement with
SSDV control is much smaller than that with SSDI control in Fig. 10. On average the voltage Vsw is about 70 V and the
voltage Vst is about 4 V. The performances of the classical SSDI and SSDV in two-mode control are summarized in Table 4.
The decibel values of the first and second resonance peaks without and with control, and the damping effect of the
different control approaches, which is the reduction of peak values after control, are listed in the table.
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Fig. 11. Time response of the displacement and switched voltage with classical SSDV technique: (a) displacements with and without control and

(b) switched voltage and controlled displacement.

Table 4
The control performances of different approaches in multimodal control.

Frequency

(Hz)

Peak value

without

control (dB)

Peak value (upper)

and reduction

(lower) with classical

SSDI (dB)

Peak value (upper)

and reduction

(lower) with classical

SSDV (dB)

Peak value (upper)

and reduction

(lower) with SSDI

based on energy (dB)

Peak value (upper) and

reduction (lower) with

adaptive SSDV based on

energy (dB)

11 �3.8 �8.9 �19 �30.8 �29.9

�5.1 �15.2 �27 �26.1

69.1 �9.2 �11.8 �19.6 �10.7 �20

�2.6 �10.4 �1.5 �10.8
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The deterioration of damping effect can be attributed to the shift of switching points which are influenced by the
displacement of both the first and second modes in the two-mode control. The best damping effect is achieved for a given
mode only when the voltage is inverted at each extremum of this mode. Hence, normally single-mode control gives the
best control performance. However in two-mode control, the displacement is summation of the displacements of the two-
mode as shown in Fig. 5 and the extrema of the composite displacement are neither the extrema of the first mode nor those
of the second mode. Hence damping effect deteriorates for both modes in two-mode control.

The deterioration of damping effect is much smaller in SSDI than in SSDV. This can be attributed to the coupling effect of
the voltage on the piezoelectric patch between the two modes. As shown in Eq. (25), the switched voltage is a function of
the average effective displacement, which is affected by the vibration displacement of both modes as shown in Eq. (21).
Since both modes contribute to the voltage on the piezoelectric patch, the voltage is higher in two-mode control than in
single-mode control under the condition of the same displacement amplitude. Hence, the effect by the shift of the
switching points is partially cancelled by the contribution of the other mode on the voltage. In SSDV, the voltage is mainly
affected by the voltage source so that the contribution of the other mode on the voltage is negligible. Hence the effect by
the shift of the switching points reflected in the control performance.
5.3. Results of the two-mode control using the new switch control strategy

5.3.1. Results of SSDI

First the new switch control strategy is combined with the SSDI technique and used in the two-mode control of the
composite beam. The frequency response of displacement is shown in Fig. 12 and its time response is shown in Fig. 13(a).
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Fig. 12. Control performance of the improved SSDI technique with the new switch control strategy in two-mode control: (a) frequency response of the

displacement and (b) enlarged around the resonant frequency of the second mode.
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Fig. 13. Time response of the displacement and switched voltage using the improved SSDI technique with the new switch control strategy in two-mode

control: (a) displacements with and without control and (b) switched voltage and controlled displacement.
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The amplitude of the two modes is reduced by 27 and 1.5 dB, respectively. Fig. 13(a) also shows that the amplitude of the
first mode is much smaller than that of the second mode. Compared to the two-mode control using the classical SSDI,
the damping effect of the first mode is much higher, but that of the second mode is slightly lower. Comparing the
controlled displacement in Figs. 13(a) and 10(a), the amplitude of the synthetic vibration of the first and second modes has
been reduced by using the new switch control strategy. This means that the new method is effective in improving the
global control performance.

Although the global control performance is improved by the new method, mixed control effects are achieved for
different mode. This can be explained by the voltage signal. The switched voltage on the piezoelectric patch is shown in
Fig. 13(b). It can be seen that voltage inversion does not occur at some of the displacement extrema. Skipping some
extrema can increase the damping effect of the first mode, but decrease that of the second mode. The control performance
of the first mode with the new method is even better than that in the single-mode control. This can be attributed to the
coupling voltage generated by the first and second mode in two-mode control. In the single-mode control of the first mode,
the voltage is generated by the first mode itself. The existence of the second-mode vibration leads to higher voltage in
two-mode control than in single-mode control. Due to the better switch control algorithm, the voltage is efficiently utilized
in the damping of the first mode. Hence, the damping effect of the first mode with the new method in two-mode control is
better than that in single-mode control.

5.3.2. Results of SSDV with adaptive voltage source

Here the new switch control strategy is combined with the adaptive SSDV technique proposed in the former study [15]
and used in the two-mode control of the composite beam. The output of the voltage source is very important for the
control performance and stability of the system. The value of the voltage is adjusted adaptively by LMS-algorithm for
optimal control performance in the adaptive SSDV. The frequency response of displacement is shown in Fig. 14 and its time
response is shown in Fig. 15(a). The amplitude of the two modes is reduced by 26.1 and 10.8 dB, respectively. The damping
effect of the second mode is almost the same as that using the classical SSDV, but damping effect of the first mode has been
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Fig. 14. Control performance of the improved SSDV technique with the new switch control strategy in two-mode control: (a) frequency response of the

displacement and (b) enlarged around the resonant frequency of the second mode.
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improved significantly. The amplitude of the synthetic vibration with control in Fig. 15(a) is much smaller than that in
Fig. 11(a). This means that the new method with the combination of the new switch control strategy and the adaptive
SSDV technique is a promising approach for the control of two-mode vibration of the beam.

The switched voltage on the piezoelectric patch is shown in Fig. 15(b). Similar to SSDI control with the new switch
control strategy shown in Fig. 13(b), voltage inversion is prevented at some of the displacement extrema, but at a lower
frequency. Skipping some extrema increases the damping effect of the first mode, but due to the lower skipping frequency
damping effect of the second mode is barely affected.

The damping effects of all the control approaches in multimodal control are summarized in Table 4. The new switch
control strategy exhibits better global control performance than the classical switching method in SSDI control. The
combination of the new switch control strategy with the adaptive SSDV gives the best control performance in all
considered methods.
6. Conclusions

In this study, a new switch control strategy based on an energy threshold is proposed for the synchronized switch
damping techniques in multimode control. This strategy is derived from the total converted energy of a SSD system in a
given time window. The new switch control strategy is used in both the SSDI technique and the SSDV technique, which are
applied to the two-mode control of a composite beam. Their control performances are compared with those of the
single-mode control and those of classical SSDI and SSDV techniques in two-mode control. The experimental results show
that voltage inversion is prevented at some of the displacement extrema to increase the total converted energy. The
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Fig. 15. Time response of the displacement and switched voltage using the improved SSDV technique with the new switch control strategy in two-mode

control: (a) displacements with and without control and (b) switched voltage and controlled displacement.
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improved SSDI using the new switch control strategy exhibits better overall damping effect in the resultant displacement
than classical SSDI, which switches the voltage at every extremum. The improved SSDI is especially effective for the first
mode of the beam. The damping effect of the improved SSDV using an adaptive voltage source and the new switch control
strategy is also much better than that of the classical SSDV.
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